

Search for H⁺ and H⁺⁺ bosons with the CMS detector

Nuno Almeida – LIP Lisbon (On behalf of CMS collaboration)

Supersymmetry 2011 28 Aug- 02 Sept Fermilab

Outline

- Theoretical Overview
- Search for singly charged Higgs boson
- Search for doubly charged Higgs boson
- Summary

H⁺ search in Top quark decay

Ref: CMS-PAS-HIG-11-008

➤ Charged Higgs boson is predicted by extensions of Standard Model with two Higgs doublets, such as MSSM (5 higgs predicted : H,h, A and H[±])

 \triangleright Production and decay at tree level depends on M_A and tan $\beta = v_1/v_2$

Light H+ (m_{H+} < m_{top}):
$$pp \rightarrow t\bar{t} \rightarrow H^{\pm}bW^{\mp}\bar{b}$$

Heavy H+ (m_{H+} > m_{top}) :
$$pp \rightarrow tH^{\pm}$$
 (tbH^{\pm})

Search assumptions:

$$m_{H^+} < m_{top}$$
, $H^+ \rightarrow \tau \nu$, $BR(H^+ \rightarrow \tau \nu) = 1$ (high $tan \beta$)

Three channels included:

- 1) Hadronic tau decay, hadronic W decay ($au_{
 m had}$ + jets) : $H^\pm o au_h
 u, W^\mp o q_i ar q_j$
- 2) Hadronic tau decay, leptonic W decay (au_{had} + μ): $H^{\pm} o au_h
 u, W^{\mp} o \mu
 u$
- 3) Leptonic tau decay, leptonic W decay (e + μ) : $H^{\pm} \to \tau \nu, \tau \to e(\mu) \nu, W^{\mp} \to \mu(e) \nu$

Tau reconstruction in CMS

Ref: CMS-PAS-TAU-11-001

 \triangleright Experimental signature of **hadronically-decaying taus** (τ_{had}) is a collimated jet of up to three charged particles and photons from π^0 's decay.

➤ Tau reconstruction (HPS algorithm) uses Particle Flow objects, with selection applied on isolation (loose,medium,tight working points), mass and collimination. Additional selections applied to reject electrons and muons

Fully hadronic final state

1.08 fb-1 of data used

Main backgrounds: QCD multi-jet, tt, W+jets

General selection strategy: suppress

QCD multi-jet background below tt and other backgrounds

Event Selection:

- ➤ Trigger: Single tau + E_Tmiss trigger
- ➤ One tau : 1 prong , p_T > 40 GeV/c,

p_⊤(leading particle)>20 GeV/c, tight isolation

- \triangleright At least 3 jets, $p_{\tau} > 30$ GeV/c, $|\eta| < 2.4$
- ➤ At least one b-jet

After all selections except Tau isolation and b-tagging

Fully hadronic event yields

- ➤ QCD multijet background estimation uses factorisation of E_T^{miss} + b-tagging sel. efficiencies
- >EWK + ttτ taken from data using embedding simulated taus in muon events

Data agrees well with the SM expectations within the uncertainty NO excess observed!

Muon + Hadronic tau decay

1.09 fb-1 of data used

Main backgrounds: tt,W+jets

Event Selection:

- \triangleright Iso. single muon trigger (p_T > 17 GeV/c)
- ➤ One isolated muon p_T >20 GeV/c
- ➤ At least 2 jets p_T>30 GeV/c
- ightharpoonup E_T miss > 40 GeV
- ➤ One tau : p_T >20 GeV/c, loose isolation
- Opposite-Sign between muon and tau
- ➤ At least one b-jet

After selections of one muon and 2 jets

Muon + hadronic tau decay event yields

Summary of event yields after final selection

Source	$N_{\rm events} \pm { m stat.} \pm { m syst.}$	
$HH+HW$, $m_{H^{+}}=120 \text{ GeV}/c^{2}$, BR=0.2	$323 \pm 8.7 \pm 67$	
τ fakes	$163.0 \pm 9.7 \pm 17.3$	
$t ar t o W b W b o \ell u b \ au u b$	$152.7 \pm 2.8 \pm 35.0$	
$t ar t o W b W b o \ell u b \ \ell u b$	$13.2 \pm 0.8 \pm 3.5$	
$Z/\gamma^* ightarrow ee, \mu \mu$	$0.7 \pm 0.5 \pm 0.5$	
$Z/\gamma^* o au au$	$30.9 \pm 3.6 \pm 6.0$	
Single top	$13.8 \pm 0.7 \pm 2.1$	
VV	$2.4 \pm 0.2 \pm 0.4$	
Total expected from the SM	$376.7 \pm 10.8 \pm 39.7$	**
Data	361	

Background measured from data with tau fake rate method

Data agrees well with the SM expectations within the uncertainty NO excess observed

eμ final state

0.98 fb-1 of data used

Summary of event yields after final selection

Source	$N_{\rm events} \pm { m stat.} \pm { m syst.}$
HH+HW, m_{H^+} =120 GeV/ c^2 , BR=0.2	$219 \pm 7 \pm 43$
$t ar{t}$	$1094 \pm 6 \pm 219$
$Z/\gamma^* ightarrow ll$	$98 \pm 3 \pm 12$
W+jets	$18 \pm 3 \pm 2$
Single top	$40 \pm 1 \pm 4$
VV	$14.7 \pm 0.4 \pm 1$
Total expected from SM	$1264 \pm 7 \pm 219$
Data	1340

Main background: tt

Event Selection:

- ► e-μ trigger
- ➤One isolated e (p_T>20 GeV/c)
- \triangleright One isolated μ (p_⊤>20 GeV/c)
- ➤ At least 2 jets (p_T>30 GeV/c)

Deficit of total events expected in the presence of charged Higgs boson, because e/ μ from τ decay become soft

Upper limit on BR ($t \rightarrow H^{\dagger}b$)

95 % CL upper limit on BR($t\rightarrow H^+b$) using CLs method.

The signal is modelled as the excess (or deficit) of events yields in presence of H⁺

$$N_{\text{excess (deficit)}} = N_{\text{tt}}^{\text{SUSY}} - N_{\text{tt}}^{\text{SM}} = N_{\text{WH}} 2(1-x)x + N_{\text{HH}} x^2 + N_{\text{tt}}^{\text{SM}} ((1-x)^2 - 1), x = BR(t \rightarrow H^+b)$$

Results from Combination

combination of the fully hadronic, muon + tau and electron + muon channels

Tevatron limit : 0.15 – 0.2

V.M. Abazov et al. Phys.Lett.B682:278-286,2009 arXiv:0908.1811

exclusion region in MSSM (m_h^{max}) MH⁺-tan β parameter space

10

Doubly charged Higgs boson (Φ⁺⁺)

Ref: CMS-PAS-HIG-11-007

Standard model extension by a scalar triplet adding three new particles

$$-\Phi^{++},\Phi^{+},\Phi^{0}$$
 (type-II seesaw model)

- ➤ Triplet responsible for neutrino masses, the couplings being directly linked to the mass matrix
- Unknown neutrino mass matrix
 - unknown branching ratios
 - we assume decays to leptons only
- Six standard searches covered, where

Four additional model dependent points to describe the neutrino sector with different mass hierarchies

Model Points

Four additional model dependent points:

- ▶ BP1 describes the neutrino sector with normal mass hierarchy and a massless lightest neutrino, m₁ = 0 eV
- > BP2 describes the same but with the inverse mass hierarchy
- BP3 represents a degenerate neutrino mass spectrum with m₁ = 0.2 eV
- \triangleright BP4 represents the degenerate case in which all Φ^{++} branching fractions are equal

Φ⁺⁺ analysis in a nutshell

0.98 fb-1 of data used

- Signatures: 3 or 4 leptons in the final state, dilepton made by same sign lepton
- ➤ Backgrounds: ZZ, WZ , Z+jets, tt+jets, (W+jets, QCD)

Selection Strategy:

- Dilepton triggers
- > Lepton id, tight isolation, charge matching
- $\succ \Sigma p_T$ cuts on leptons
- Z mass veto
- Cut Δφ between leptons

Pre-selection:

- At least two leptons with $p_{\tau} > 35 / 10 \text{ GeV/c}$
- Loose isolation requirement
- Veto of low invariant mass resonances (< 12 GeV)</p>
- Additional topological cuts on leptons depending on final states with three or four leptons
- Events are counted in the mass window depending on the Higgs boson mass considered
- ➤ Control from real data of the lepton-related efficiencies, background estimation is driven from data using the sidebands method
- > Inclusive search in order to cover the whole phase space.

Invariant Mass Reconstruction

Lower limit on Φ⁺⁺

95% CL lower Limits obtained using CLs method

Lower limit on Φ

Excluded by Tevatron or LEP

L=0.98 fb⁻¹

CMS Preliminary

$$BR(\Phi^{++} \rightarrow e^+e^+)=100\%$$

$$BR(\Phi^{++} \rightarrow e^{+}\mu^{+})=100\%$$

$$BR(\Phi^{++} \to \mu^{+}\mu^{+})=100\%$$

$$BR(\Phi^{++} \rightarrow e^{+}\tau^{+})=100\%$$

$$BR(\Phi^{++} \rightarrow \mu^+ \tau^+)=100\%$$

BP2: inverse hierarhy

BP3: degenerate masses

BP4: equal branchings

Summary

H+ and Φ^{++} analysis performed with ~1 fb⁻¹ of 2011 CMS data

H+ search:

- > Three channels included (fully hadronic, $\mu+\tau_{had}$,e+ μ)
- No excess of events observed
- Upper limits of 4-5 % placed on BR(t→H+b) in mass range of 80-160 GeV

Φ⁺⁺ search:

- > A fully inclusive search has been performed with no excess observed
- > CMS has the best limits in most of channels

Backup Slides

The Compact Muon Solenoid

Expected events vs BR

e+muon

$$x = BR(t \rightarrow bH^+)$$

$$N_{tt}$$
 (in presence of H⁺) = N_{WH} 2(1-x)x + N_{HH} x² + N_{tt} SM (1-x)²

Background measurements in fully hadronic final state

QCD multi-jet background, measured from data

Method based on factorisation of E_{τ}^{miss} + b-tagging from other selections

Apply same selections like signal analysis but in different order.

Factorize $\varepsilon(E_{\tau}^{miss} + b\text{-tagging})$ at a selection level where QCD contribution dominates. $\varepsilon(E_{\tau}^{miss} + b\text{-tagging})$ estimated in bin of τ p_{τ}.

 \triangleright EWK+ttτ background (genuine taus within p_T, η acceptance), measured from data

Based on tau embedding method

Select events with only one isolated lepton ($p_T > 40$ Gev/c, $|\eta| < 2.1$) and 3 jets ($p_T > 30$ GeV/c, $|\eta| < 2.4$). Replace the muon by a fully simulated and reconstructed tau with same momentum.

 \triangleright EWK+ttτ fakes background (e/µ/jets mis-identified as taus, or genuine taus outside p_τ, η acceptance)

Expected to be small, estimated from simulation

QCD multi-jet background

- Same selections like in signal analysis, but applied in different order to select from data sample where QCD multi-jets dominate

 Numb.
- Number of events in signal region estimated with

 $N_{QCD} = \Sigma_i N_{selected, i}^{data} x f_{presel, i} x \epsilon_{MET+b, i}^{data}$, where i is tau p_T bin and f fraction of QCD multi-jet events

	Number of events
MC expectation	7.4 ± 0.3
data estimate	7.5 ± 0.5
	(stat.+syst.)

- · Tau+MET trigger
- · Tau candidate selection
 - Trigger matching, jet $p_T>40$ GeV/c, $|\eta|<2.1$, ldg. track $p_T>20$ GeV/c, e/μ veto, select exactly one tau cand.
- Veto of isolated electrons muons (p_T>15 GeV/c) and muons (p_T>15 GeV/c)
- · Jet selection:
 - − N_{jets} ≥3 with E_T >30 GeV and |η|<2.4 in addition to the tau candidate, ΔR(τ, jet)<0.5

EMET+b-tag,i

- Factorize out MET+ btagging cuts in bins of tau candidate p_T (MET>70)
- Sample purity 60-90 %

tau ID (HPSTight isolation && Nprongs=1)

- · Number of events after tauID
- Sample purity 50-90 %

EWK+ttτ background (genuine taus) data-driven

- Control sample selection
- → One muon, $p_{\tau} > 40$ GeV/c, $|\eta| < 2.1$
 - •Isolation by requiring no HPSTight-quality PFCandidates in $0.1 < \Delta R < 0.4$
- → Veto of isolated electrons and other muons, $p_{\tau} > 15$ GeV/c
- → At least 3 PF jets, $p_T > 30 \text{ GeV/c}$, $|\eta| < 2.4$
- Tau embedding at PF level

Simulate and reconstruct tau with same momentum as muon

- Normalisation
- → Tau trigger efficiency with weighting by efficiency
- → MET trigger efficiency with
- "vector sum caloMETnoHF" > 60 GeV
- → Muon trigger and ID efficiency with Tag and Probe

Result: 71 ± 5 (stat) ± 15 (syst) MC expectation: 78 ± 7 (stat)

Systematics (Fully Hadronic)

Table 1: The systematic uncertainties (in %) for the backgrounds and the signal from $t\bar{t} \to H^{\pm}bH^{\mp}\bar{b}$ (HH) and $t\bar{t} \to W^{\pm}bH^{\mp}\bar{b}$ (WH) processes at $m_{H^{\pm}}$ =80-160 GeV/ c^2 .

	HH	WH	QCD	$EWK+t\bar{t}$	EWK+ $t\bar{t}$ τ fakes				
				τ	$t \bar{t}$	tW	W+jets	Z+jets	VV
$\tau - p_T^{miss}$ trigger	24-26	24-25		9.6	22	22	22	24	23
τ-jet id	7.0	7.0		7.0					
jet, $\ell ightarrow au$ mis-id					15	15	15	15	15
JES+JER+MET	13–17	14–19		18	17	25	14	19	22
lepton veto	0.2-0.3	0.3-0.4			1.5	0.6	0.6	0.6	0.7
b-jet tagging	12–15	14-16			16	17			
jet→b mis-id							13	10	11
QCD stat.+syst.			7.1						
EWK+ $t\bar{t}$ τ stat.				6.8					
$f_{W \to \tau \to \mu}$				0.7					
muon selections				0.6					
MC stat	4.1-7.0	4.8-7.2			16.3	56	100	100	90
cross-section	20	20			20	8	5	4	4
luminosity	6.	.0					6.0		

Background estimate in muon + tau final state

Main background from "fake" tau jets major contribution : W+jets, $t\overline{t} \rightarrow \ell$ + jets

Data driven background estimation:

- Select jets in events with:
 - 1 lepton + MET + ≥3 jets
 - + ≥ 1 b-tagged jet
- Apply to every jet a "jet $\rightarrow \tau$ probability (pt,eta,jet width)" Jet width = $V(\sigma_{nn}^2 + \sigma_{\phi\phi}^2)$

Jet → τ probability measured from data from different type of samples (QCD dijets, W + ≥1 jets)

Systematics

mu+tau channel

_	HH	WH	$t\bar{t}_{\ell\tau}$	$t\overline{t}_{\ell\ell}$	τ fakes	Single top	VV	DY(μμ)	DY(ττ)
τ-jet id	7.0	7.0	7.0			7.0	7.0		7.0
jet, $\ell \to \tau$ mis-id				15.0				15.0	
JES+JER+MET	6.0	4.0	3.0	3.0		8.0	8.0	71.0	14.0
b-jet tagging	6.0	6.0	5.0	5.0		8.0			
jet→b mis-id							8.0	9.0	9.0
muon selections	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0
τ fakes (stat)					6.0				
τ fakes (syst)					11.0				
cross-section		20	.0			8.0	4.0	4.	.0
MC stats	3.0	3.0	2.0	6.0		5.0	8.0	71.0	12.0
luminosity 6				6					

e-mu channel

	НН	WH	$t\bar{t}$	DY(ll)	W+jets	Single top	VV
JES+JER+MET	2.8	2.8	2.8	7.0	6.0	4.9	4.8
dilepton selection	2.5	2.5	2.5	2.5	2.5	2.5	2.5
cross section	20.0	20.0	20.0	4.0	5.0	8.0	4.0
MC stats	7.5	3.4	0.5	3.2	16.0	2.5	2.7
luminosity 6							

Summary of results (95% CL upper limits)

Model point	Former limit	CMS @ 36 pb ⁻¹	CMS @ 0.98 fb ⁻¹	Only pair- production
BR(Φ ⁺⁺ ->ee)=100%	133 GeV	144 GeV	313 GeV	274 GeV
BR(Φ ⁺⁺ ->eμ)=100%	115 GeV	154 GeV	313 GeV	275 GeV
BR(Φ ⁺⁺ ->μμ)=100%	150 GeV	156 GeV	313 GeV	277 GeV
BR(Φ ⁺⁺ ->eτ)=100%	112 GeV	106 GeV	254 GeV	211 GeV
BR(Φ ⁺⁺ ->μτ)=100%	144 GeV	106 GeV	266 GeV	219 GeV
BP1	N/A	116 GeV	269 GeV	236 GeV
BP2	N/A	131 GeV	297 GeV	263 GeV
BP3	N/A	130 GeV	291 GeV	258 GeV
BP4	N/A	127 GeV	289 GeV	255 GeV

Selection strategy

- Pre-selection:
 - ■At least two leptons with pT > 35 / 10 GeV
 - ■Loose isolation requirement
 - ■Veto of low invariant mass resonances (< 12 GeV)</p>
- ■Three lepton final state:

Label	Selection
Pre-selection	Correct topology (++- or+)
Scalar sum of $p_{\rm T}$	$\sum p_{\mathrm{T}} > m(\Phi) + 80\mathrm{GeV}$
Relative isolation	$\sum rel Iso_{lepton} < 0.1$
Veto of events containing a Z boson	$\min m(\ell^+\ell^-) - m_Z > 6 \text{GeV}$
Opening angle between same-sign leptons	$\phi(\ell^{\pm}\ell^{\pm}) < 1.8$ rad
Counting of events in a mass window	$m(\ell^{\pm}\ell^{\pm}) \in (m_{lower}, m(\Phi) + 10 \text{ GeV})$

■Four lepton final state:

Label	Selection
Pre-selection	Correct topology (++ or++) + optional extra leptons
Relative isolation	$\sum rel Iso_{lepton} < 0.125$
Scalar sum of $p_{\rm T}$	$\sum p_{\mathrm{T}} > m(\Phi) + 80\mathrm{GeV}$
Counting of events in a mass window	$m(\ell^+\ell^+) \in (m_{lower}, m(\Phi) + 10 \text{ GeV})$
	$m(\ell^-\ell^-) \in (m_{lower}, m(\Phi) + 10 \text{ GeV})$

The backgrounds have been measured from data extrapolating from sidebands

Background estimation

- Background is driven from data using the sidebands method
- Control region is the 1D or 2D (depending if it's 3- or 4-lepton analysis) region in the invariant mass distribution outside search mass window after the tight isolation requirements

$$\alpha = N_{SR} / N_{CR}$$
 in MC

$$N_{BG} = \alpha (N_{CR}^{Data} + 1)$$

$$\Delta N_{BG} = 1/sqrt(N_{CR}^{Data}+1)$$

 If not enough statistics available in SR or CR the MC statistical uncertainty is used and a 100% error is attached

Systematic uncertainties

Source	Uncertainty
Lepton ID+RECO+Isolation+k-factors (e and μ unified)	2%
Tau jet ID+RECO+Isolation	8%
Trigger + primary vertex finding	1.5%
Signal cross section	10%
Luminosity	6%
Uncertainty on $\alpha \text{, comes from PDF, QCD scale}$ and lepton energy scale	5% / 100%*
Statistical uncertainty of signal MC	1-7%
Statistical uncertainty on observed events in control region	5-100%**

^{*} If not enough statistics in MC are available and statistical uncertainty is used, then 100% is used as the uncertainty on the ratio

Limits are calculated with the CLs method in five categories based on lepton count and number of tau jets in the final state

^{**} Varies by channel, background topology and search mass

Background check plots

Reversed Z veto after isolation + Σp_T

Preselection, Z veto, reversed isolation + Σp_{T} , opening angle